Dosudo deep learning newsletter #3
Editor: Hubert Lin
Resources: Paper Yann LeCun post
GAN 是近年最受關注的架構之一,同時也以極難訓練、調整而聞名,訓練困難的肇因是生成器 G (generator) 與分辨器 D (discriminator) 的訓練目標相違背,形成特殊的 saddle point optimization 問題,在訓練過程中要不斷在 generator 的「 minimize 生成結果與真實 data 的差異」與 discriminator 的「maximize 分辨是生成結果還是真實 data 的分辨能力」之間切換,因 saddle point 的不穩定性而造成訓練困難。
Continue reading “Optimizing the Latent Space of Generative Networks (GLO)”